Publications

Preparation and test of a reference mixture of eleven polymers with deactivated inorganic diluent for microplastics analysis by pyrolysis-GC–MS
||||

Analytical pyrolysis coupled to gas chromatography and mass spectrometry (Py-GC–MS) can provide both qualitative and quantitative data on polymer mixtures, but no standardized protocols are available yet for the application of this technique in the field of environmental microplastics analysis. In this paper, we describe the preparation of a mixture of eleven common polymers, that could be used as reference sample for microplastics analysis in environmental samples by Py-GC–MS. The mixture is obtained combining two solutions with a total of nine polymers, and a solid mixture of two polymers with an inorganic diluent. First, a set of characteristic pyrolysis products and m/z signals is proposed as markers to perform semi-quantitative calculations. Then, changes in the pyrolytic yields of characteristic products due to secondary reactions in the pyrolytic environment are systematically evaluated. The characteristic pyrolysis product of polyurethane (PU), 4,4’-diphenylmethane diisocyanate (MDI), was found to be highly susceptible to hydrolysis by the inorganic diluent, except when deactivated silica was used. Finally, the performance of the reference mixture using the silica diluent is evaluated in terms of reproducibility and linearity of response. Relative standard deviations lower than 10% and good linearity of the integrated areas (r2 > 0.96) were obtained for all polymers except PU and polyethylene terephthalate. The results show that the proposed mixture could be used in Py-GC–MS analyses of microplastics as a reliable reference material for at least nine of the eleven investigated polymers.

 

Latest Posts

1
Leaving a plastic legacy: Current and future scenarios for mismanaged plastic waste in rivers

This paper examines the exposure of river systems to MPW in order to better understand the sedimentary processes that control the legacy of plastic waste. According to the study, about 0.8 million tonnes of MPW entered rivers globally in 2015, affecting about 84 percent of rivers by surface area. According to the study, the amount[…]

2
A critical review on recent research progress on microplastic pollutants in drinking water

The article summarizes the results of various scientific studies regarding the presence of microplastics in different drinking water sources. Further research is required to understand the effects of microplastic bioaccumulation on living organisms. There is a growing concern about microplastic pollution in the environment, which needs to be addressed and further research should be conducted[…]

3
‘Unlocking circular economy for prevention of marine plastic pollution: An exploration of G20 policy and initiatives’

Based on a custom framework for MPP policy that combines circular economy (CE) and life-cycle perspectives, the paper provides an overview of existing policies and identifies further policy options. Approximately 300 million tons of MPP are produced annually by land-based sources, which severely impacts marine ecosystems and harms livelihoods. Microplastic pollution is an issue that[…]

4
How plastic debris and associated chemicals impact the marine food web: A review

This review seeks to identify the complexity of impacts to marine organisms through the food web from plastic contamination. Contamination from plastic debris in marine environments pose a substantial risk to marine organisms, food webs and the ecosystem. The study investigates the intrusion of plastics into the marine food web and the subsequent consequences of[…]

5
Biodegradation of Different Types of Bioplastics through Composting—A Recent Trend in Green Recycling

The review highlights the extent and rate of the biodegradation of bioplastic in composting, soil, and aquatic environments. Bioplastic alternatives to petroleum-derived plastics are becoming more and more prevalent and have the potential to make a significant contribution to reducing plastic pollution in the environment. However, their biodegradation is highly dependent on various factors in[…]