Publications

Preparation and test of a reference mixture of eleven polymers with deactivated inorganic diluent for microplastics analysis by pyrolysis-GC–MS
||||

Analytical pyrolysis coupled to gas chromatography and mass spectrometry (Py-GC–MS) can provide both qualitative and quantitative data on polymer mixtures, but no standardized protocols are available yet for the application of this technique in the field of environmental microplastics analysis. In this paper, we describe the preparation of a mixture of eleven common polymers, that could be used as reference sample for microplastics analysis in environmental samples by Py-GC–MS. The mixture is obtained combining two solutions with a total of nine polymers, and a solid mixture of two polymers with an inorganic diluent. First, a set of characteristic pyrolysis products and m/z signals is proposed as markers to perform semi-quantitative calculations. Then, changes in the pyrolytic yields of characteristic products due to secondary reactions in the pyrolytic environment are systematically evaluated. The characteristic pyrolysis product of polyurethane (PU), 4,4’-diphenylmethane diisocyanate (MDI), was found to be highly susceptible to hydrolysis by the inorganic diluent, except when deactivated silica was used. Finally, the performance of the reference mixture using the silica diluent is evaluated in terms of reproducibility and linearity of response. Relative standard deviations lower than 10% and good linearity of the integrated areas (r2 > 0.96) were obtained for all polymers except PU and polyethylene terephthalate. The results show that the proposed mixture could be used in Py-GC–MS analyses of microplastics as a reliable reference material for at least nine of the eleven investigated polymers.

 

Latest Posts

1
The effects of riverside cities on microplastics in river water: A case study on the Southern Jiangsu Canal, China

The paper studies the microplastic abundances and characteristics in the Southern Jiangsu Canal to reveal the effect of riverside cities on microplastics in river water. The results show that the microplastic abundance in the water body of the South Jiangsu Canal ranges from 3.41 to 19.07 particles L−1, with an average of 9.59 ± 3.95[…]

2
Distribution and weathering characteristics of microplastics in paddy soils following long-term mulching: A field study in Southwest China

This paper reveals the status of microplastic pollution in paddy soil with long-term mulching. The study investigates the distribution and weathering characteristics of filmy microplastics in a mulched paddy field (non-mulched, four years of mulched, and ten years of continuous mulched soil were investigated) in Southwest China. The filmy microplastics accumulated annually in the plough[…]

3
Review of polymer technologies for improving the recycling and upcycling efficiency of plastic waste

The paper reviews advancements in polymer technologies that aim to improve the efficiency of recycling and upcycling plastic waste. Increasing the rate of recycling and upcycling is critical for addressing the issues caused by plastic pollution, and, at the same time, overcoming the technical limitations on the same. The research emphasises the need to develop[…]

4
Nanoplastics are significantly different from microplastics in urban waters

The study analyses the current advancements in the behavioural differences between MPs and NPs in urban waters. Analytical challenges, fate, interactions with surrounding pollutants, and eco-impacts of MPs and NPs are similarly discussed in this paper. It has been highlighted in the study that the characterization and fate studies of NPs are more challenging as[…]

5
Unfolding the science behind policy initiatives targeting plastic pollution

The study investigates scientifically evidence-based policy initiatives for targeting plastic pollution. The issue of plastic pollution is complex and still related to several uncertainties, which implies that policy initiatives must allow for flexibility and ongoing evaluations to adjust to the evolving knowledge generation. It is also important that the scientific community provide the needed research[…]