Effects of nanoplastics at low level on the marine primary producer are largely unclear. To assess the potential risk of nanoplastic pollution, this study exposed marine green microalgae Platymonas helgolandica to 20, 200, and 2000 μg/L 70-nm polystyrene nanoplastics for 6 days. Nanoplastics significantly inhibited the growth of P. helgolandica during the first 4 days of exposure, and elevated heterocyst frequency was observed in 200 and 2000 μg/L exposure groups in the early exposure stage. Exposure to 200 and 2000 μg/L nanoplastics for 4 days increased the membrane permeability and mitochondrial membrane potential, and decreased light energy used in photochemical processes of microalgae. Moreover, clear morphological changes, including surface folds, fragmentation, aggregation cluster, and rupture, in the microalgae exposed to nanoplastics were observed under scanning electron microscope and transmission electron microscope. These results demonstrate that nanoplastics could reduce the microalgal vitality by the damage on cell morphology and organelle function.
The current study examines the contamination of microplastics in three greenhouse types: abandoned, normal, and simple. The findings revealed that the abundance of microplastics was found to be the highest in the abandoned greenhouse, followed by the normal greenhouse and simple greenhouse. The mean abundance of microplastic organic fertilizer and irrigation water was also high.[…]
The study examines the distribution of residual film after eight years of film mulching in mid-April 2018. Results from the study revealed that eight years of mulching significantly increased the quantity of agricultural mulch film residues in the soil. The size of residual film fragments was found to vary from 0.25 cm2 to 109 cm2,[…]
A study in Yuanmou County, Yunnan Province, investigated microplastic pollution in different land uses, including facility farmland, traditional farmland, orchard, grassland, and woodland. Results showed a significant difference in microplastic abundance and characteristics between different land use types. Facility farmlands, traditional farmlands, and orchard lands had higher microplastic abundance than grasslands and woodlands. The main[…]
The study analysed 225 soil samples from maize planting zones in northern China, revealing that long-term plastic film mulching increases microplastic pollution in agricultural soils. The abundance of microplastics was significantly higher in mulched soils (754 ± 477 items kg-1) than in non-mulched soils (376 ± 149 items kg-1). The length of time with film[…]
The study examined the relative abundances and morphological distributions of microplastics (MPs) in water, sediments, and farmland soils in the Caohai Lake region. The estuary in the study area was considered a potential sink for MP transportation. Transparent and black MPs accounted for a large proportion of MPs in the five environments, with possible sources[…]