Understanding the impact of plastic debris on marine birds is important for conservation of some species, and assessing risk from this anthropogenic threat requires high-quality distribution data for both marine birds and plastic debris. We applied a risk assessment framework to explore the relative risk for 19 marine bird species posed by plastic debris in the California Current Large Marine Ecosystem. We estimated exposure for each species by combining scores from (1) spatial overlap of predicted marine bird densities from habitat-association models and predicted density of marine plastics from terrestrial input and ocean circulation models, (2) species’ foraging behavior, and (3) species’ residence time in the California Current Large Marine Ecosystem. We estimated sensitivity for each species by combining scores for (1) mortality/sub-lethal effects of ingested plastic debris, (2) off-loading of plastics via regurgitation, (3) fecundity, and (4) age of breeding maturity. Overall risk from marine debris was greatest for more pelagic species and lowest for nearshore coastal species and generally agreed with published plastic ingestion studies. Notably, marine plastic debris densities are greatest at the western edge and offshore of the study domain, which likely explains the greater risk we observed in more pelagic species. This study is the first to look specifically at plastic debris risk to marine birds in the California Current Large Marine Ecosystem, and our results suggest that any attempts to mitigate the impacts of plastic debris on marine birds will likely require assessment and actions beyond the California Current into the broader Pacific basin.
The current study examines the contamination of microplastics in three greenhouse types: abandoned, normal, and simple. The findings revealed that the abundance of microplastics was found to be the highest in the abandoned greenhouse, followed by the normal greenhouse and simple greenhouse. The mean abundance of microplastic organic fertilizer and irrigation water was also high.[…]
The study examines the distribution of residual film after eight years of film mulching in mid-April 2018. Results from the study revealed that eight years of mulching significantly increased the quantity of agricultural mulch film residues in the soil. The size of residual film fragments was found to vary from 0.25 cm2 to 109 cm2,[…]
A study in Yuanmou County, Yunnan Province, investigated microplastic pollution in different land uses, including facility farmland, traditional farmland, orchard, grassland, and woodland. Results showed a significant difference in microplastic abundance and characteristics between different land use types. Facility farmlands, traditional farmlands, and orchard lands had higher microplastic abundance than grasslands and woodlands. The main[…]
The study analysed 225 soil samples from maize planting zones in northern China, revealing that long-term plastic film mulching increases microplastic pollution in agricultural soils. The abundance of microplastics was significantly higher in mulched soils (754 ± 477 items kg-1) than in non-mulched soils (376 ± 149 items kg-1). The length of time with film[…]
The study examined the relative abundances and morphological distributions of microplastics (MPs) in water, sediments, and farmland soils in the Caohai Lake region. The estuary in the study area was considered a potential sink for MP transportation. Transparent and black MPs accounted for a large proportion of MPs in the five environments, with possible sources[…]