Plastics in the marine environment are introduced through multiple pathways, and pose serious threats to aquatic biota. Recently microplastic pollution and its possible consequences in India have been recognized by the scientific community, however the extent of the crisis has not yet been quantified. The present study attempted to ascertain the abundance, distribution and characteristics of microplastics in coastal waters (14 locations), beach sediments (22 locations) and marine fishes (11 locations) from the state of Kerala, southwest coast of India. The results showed that the mean microplastic abundance was 1.25 ± 0.88 particles/m3 in coastal waters and 40.7 ± 33.2 particles/m2 in beach sediments with higher concentrations in the southern coast of the state. The abundance of microplastics, mostly contributed by fragments, fibre/line and foam, in both coastal waters and beach sediments, were highly influenced by river runoff and proximity to urban agglomeration. Fourier Transform Infrared Spectroscopy-Attenuated Total Reflection (FTIR-ATR) revealed that polyethylene (PE) and polypropylene (PP) were the dominant polymers in the marine environment. The digestive tracts of 15 out of 70 commercially important fishes studied, contained 22 microplastic particles. Polyethylene (PE; 38.46%) followed by cellulose (CE; 23.08%), rayon (RY; 15.38%), polyester (PL; 15.38%) and polypropylene (PP; 7.69%) were the major contributors in the fish ingested microplastic composition. A broad range of heavy metals, metalloids and other elements that are potentially indicative of hazardous chemicals were present in microplastics collected from the beaches of Kerala. These results enhance our understanding on the sources, transport pathways and the associated environmental risks of microplastics to marine ecosystems.
This paper characterizes the fungal and bacterial colonizers of 5 types of plastic films (High-Density Polyethylene, Low-Density Polyethylene, Polypropylene, Polystyrene, and Polyethylene Terephthalate) throughout a 242-day incubation in the south-eastern Mediterranean and relates them to the chemical changes observed on the surface of the samples via ATR-FTIR. Neither bacterial nor fungal community structures were related[…]
This paper provides insights into the sustainable alternatives that can replace conventional plastic mulches, such as biodegradable mulches made from natural fibers and biopolymers. The microscopic and FTIR analyses conducted during the study showed the degradation of the fibers from the mulches during the exposure time to a certain extent. The nonwoven mulches provide higher[…]
This paper investigates the degradation of biodegradable polybutylene adipate terephthalate/polylactic acid (PBAT/PLA) and traditional polyethylene (PE) plastic under two typical abiotic conditions: ultraviolet (UV) irradiation and mechanical abrasion (MA) for up to nine months. The quantitative analysis of the degradation products was carried out using membrane filtration and total organic carbon determination (MF-TOCD). The results[…]
This paper identifies technological innovation, policy formulation, advocacy and sensitization, and bioremediation as some of the approaches that are currently used for the mitigation of plastic pollution in Nigeria. This chapter also highlights the need to encourage, enhance, and disseminate scientific research on mitigating the harmful effects of plastic pollution in Nigeria. It concluded with[…]
This review provides insights into the sources of microplastics, the ecotoxicity of microplastics, and the impact microplastics have on aquatic and marine life, management, and bioremediation of microplastics. Policies and strategies adopted by the government to combat microplastic pollution are also discussed in this review. Microplastics tend to accumulate in many aquatic systems, contaminate them,[…]