Eco-friendly magnetic biochar: An effective trap for nanoplastics of varying surface functionality and size in the aqueous environment

The surge in nano/microplastics (NPs/MPs) through myriad daily products released in the aqueous environment highlights the importance of the urgent development of mitigation techniques. The study has assessed the performance of iron-modified biochar pyrolyzed at two different temperatures, i.e., 550 °C (FB-550) and 850 °C (FB-850), with magnetic extractability for the easy and prompt removal of NPs of varying size and surface functionality. NP1 (1000 nm, carboxyl), NP2 (1000 nm, amine), and NP3 (30 nm, carboxyl) were subjected to batch experiments with the composites. Rapid elimination of all the NPs (<10 min) from the water system using robust magnetic-composites was observed. A higher-order of reaction kinetics (n > 2) was found through the general order model, and a good fit for Sips isotherm suggests ultrafast NPs removal and heterogeneous nature of the composite surface. Maximum removal capacities for NP1 (225.11 mg/g), and NP3 (206.46 mg/g) were obtained using FB-850, whereas FB-550 showed higher removal of NP2 (290.20 mg/g). The influence of solution pH on the sorption of NPs was limited with significant variation in zeta potential, suggesting the probability of surface complexation of NPs. The spectroscopic analysis of reaction mixture showed the disappearance of COO− peak, generation of FeOOH stretching, and shift in Fe-O band, confirming the involvement of surface complexation in the sorption process. Minimal impact of environmental parameters, reaction spontaneity, and efficient removal of NPs in complex aqueous matrices justify the composites’ environmental applicability. No-iron release and excellent reusability of the utilized adsorbents support the large-scale applicability of the composites.

Latest Posts

Extreme weather events as an important factor for the evolution of plastisphere but not for the degradation process

This paper characterizes the fungal and bacterial colonizers of 5 types of plastic films (High-Density Polyethylene, Low-Density Polyethylene, Polypropylene, Polystyrene, and Polyethylene Terephthalate) throughout a 242-day incubation in the south-eastern Mediterranean and relates them to the chemical changes observed on the surface of the samples via ATR-FTIR. Neither bacterial nor fungal community structures were related[…]

Performance and Degradation of Nonwoven Mulches Made of Natural Fibres and PLA Polymer—Open Field Study

This paper provides insights into the sustainable alternatives that can replace conventional plastic mulches, such as biodegradable mulches made from natural fibers and biopolymers. The microscopic and FTIR analyses conducted during the study showed the degradation of the fibers from the mulches during the exposure time to a certain extent. The nonwoven mulches provide higher[…]

Characterization of the degradation products of biodegradable and traditional plastics on UV irradiation and mechanical abrasion

This paper investigates the degradation of biodegradable polybutylene adipate terephthalate/polylactic acid (PBAT/PLA) and traditional polyethylene (PE) plastic under two typical abiotic conditions: ultraviolet (UV) irradiation and mechanical abrasion (MA) for up to nine months. The quantitative analysis of the degradation products was carried out using membrane filtration and total organic carbon determination (MF-TOCD). The results[…]

Mitigating the Negative Effects of Plastic Pollution for Sustainable Economic Growth in Nigeria

This paper identifies technological innovation, policy formulation, advocacy and sensitization, and bioremediation as some of the approaches that are currently used for the mitigation of plastic pollution in Nigeria. This chapter also highlights the need to encourage, enhance, and disseminate scientific research on mitigating the harmful effects of plastic pollution in Nigeria. It concluded with[…]

Microplastics in the environment: A critical overview on its fate, toxicity, implications, management, and bioremediation strategies

This review provides insights into the sources of microplastics, the ecotoxicity of microplastics, and the impact microplastics have on aquatic and marine life, management, and bioremediation of microplastics. Policies and strategies adopted by the government to combat microplastic pollution are also discussed in this review. Microplastics tend to accumulate in many aquatic systems, contaminate them,[…]