Marine plastic debris is widely recognized as a global environmental issue. Small microplastic particles, with an upper size limit of 20 μm, have been identified as having the highest potential for causing damage to marine ecosystems. Having accurate methods for quantifying the abundance of such particles in a natural environment is essential for defining the extent of the problem they pose. Using an optical micro-Raman tweezers setup, we have identified the composition of particles trapped in marine aggregates collected from the coastal surface waters around the subtropical island of Okinawa. Chemical composition analysis at the single-particle level indicates dominance by low-density polyethylene, which accounted for 75% of the small microplastics analysed. The smallest microplastics identified were (2.53 ± 0.85) μm polystyrene. Our results show the occurrence of plastics at all test sites, with the highest concentration in areas with high human activities. We also observed additional Raman peaks on the plastics spectrum with decreasing debris size which could be related to structural modification due to weathering or embedding in organic matter. By identifying small microplastics at the single-particle level, we obtain some indication on their dispersion in the ocean which could be useful for future studies on their potential impact on marine biodiversity.
The current study examines the contamination of microplastics in three greenhouse types: abandoned, normal, and simple. The findings revealed that the abundance of microplastics was found to be the highest in the abandoned greenhouse, followed by the normal greenhouse and simple greenhouse. The mean abundance of microplastic organic fertilizer and irrigation water was also high.[…]
The study examines the distribution of residual film after eight years of film mulching in mid-April 2018. Results from the study revealed that eight years of mulching significantly increased the quantity of agricultural mulch film residues in the soil. The size of residual film fragments was found to vary from 0.25 cm2 to 109 cm2,[…]
A study in Yuanmou County, Yunnan Province, investigated microplastic pollution in different land uses, including facility farmland, traditional farmland, orchard, grassland, and woodland. Results showed a significant difference in microplastic abundance and characteristics between different land use types. Facility farmlands, traditional farmlands, and orchard lands had higher microplastic abundance than grasslands and woodlands. The main[…]
The study analysed 225 soil samples from maize planting zones in northern China, revealing that long-term plastic film mulching increases microplastic pollution in agricultural soils. The abundance of microplastics was significantly higher in mulched soils (754 ± 477 items kg-1) than in non-mulched soils (376 ± 149 items kg-1). The length of time with film[…]
The study examined the relative abundances and morphological distributions of microplastics (MPs) in water, sediments, and farmland soils in the Caohai Lake region. The estuary in the study area was considered a potential sink for MP transportation. Transparent and black MPs accounted for a large proportion of MPs in the five environments, with possible sources[…]