Analysis of microplastics in consumer products by single particle-inductively coupled plasma mass spectrometry using the carbon-13 isotope

Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) has become a well-established technique for the detection, size characterization and quantification of inorganic nanoparticles but its use for the analysis of micro- and nanoparticles composed of carbon has been scarce. Here, the analysis of a microplastic suspensions by ICP-MS operated in single particle mode using microsecond dwell times is comprehensively discussed. The detection of polystyrene microparticles down to 1.2 μm was achieved by monitoring the 13C isotope. Plastic microparticles of up to 5 μm were completely volatized and their components atomized, which allowed the detection of microplastics, their quantification using aqueous dissolved carbon standards, and the measurement of the size-distribution of the detected particles. Limits of detection of 100 particles per milliliter were achieved for an acquisition time of 5 min. The method developed was applied to the screening of microplastics in personal care products and released from food packagings. The chemical identity of the detected microplastics was confirmed by attenuated total reflectance Fourier-transform infrared spectroscopy.

Latest Posts

The effects of riverside cities on microplastics in river water: A case study on the Southern Jiangsu Canal, China

The paper studies the microplastic abundances and characteristics in the Southern Jiangsu Canal to reveal the effect of riverside cities on microplastics in river water. The results show that the microplastic abundance in the water body of the South Jiangsu Canal ranges from 3.41 to 19.07 particles L−1, with an average of 9.59 ± 3.95[…]

Distribution and weathering characteristics of microplastics in paddy soils following long-term mulching: A field study in Southwest China

This paper reveals the status of microplastic pollution in paddy soil with long-term mulching. The study investigates the distribution and weathering characteristics of filmy microplastics in a mulched paddy field (non-mulched, four years of mulched, and ten years of continuous mulched soil were investigated) in Southwest China. The filmy microplastics accumulated annually in the plough[…]

Review of polymer technologies for improving the recycling and upcycling efficiency of plastic waste

The paper reviews advancements in polymer technologies that aim to improve the efficiency of recycling and upcycling plastic waste. Increasing the rate of recycling and upcycling is critical for addressing the issues caused by plastic pollution, and, at the same time, overcoming the technical limitations on the same. The research emphasises the need to develop[…]

Nanoplastics are significantly different from microplastics in urban waters

The study analyses the current advancements in the behavioural differences between MPs and NPs in urban waters. Analytical challenges, fate, interactions with surrounding pollutants, and eco-impacts of MPs and NPs are similarly discussed in this paper. It has been highlighted in the study that the characterization and fate studies of NPs are more challenging as[…]

Unfolding the science behind policy initiatives targeting plastic pollution

The study investigates scientifically evidence-based policy initiatives for targeting plastic pollution. The issue of plastic pollution is complex and still related to several uncertainties, which implies that policy initiatives must allow for flexibility and ongoing evaluations to adjust to the evolving knowledge generation. It is also important that the scientific community provide the needed research[…]