Nano-/microplastics (NP) is a human-made emerging contaminant with worldwide occurrence. The small size (below one micrometer), the different chemical nature and the persistence make NP to potential hazards with suspect probability of tissue penetration and inflammation or as accumulator for toxins. A strategy to stop the spill of novel NP is the remediation from waste water or rivers as prominent distributors. We have developed core–shell superparamagnetic iron oxide nanoparticles (SPIONs) that attract NP and glue them to larger agglomerates which then can be removed from water by applying an external magnetic field. The shell molecules provide two interaction motifs towards NP. The tuned surface potential of the functionalized SPIONs attract complementary charged NP efficiently and the n-alkyl chain is dedicated to preferential interaction towards organic NP rather than inorganic particles. Structural analytics and molecular dynamics simulation support the proposed concept. Systematic remediation experiments with different NP (chemical structures, sizes and mixtures), from different waters – including river water – and with different SPION core materials indicate a universal validity of the concept, with bestremediation performance for mixed NP. We suggest a method for broadband remediation of various NP with simple materials and processes, which both have the potential to be up-scaled.
The paper provides new insights into marine environments and human activities and suggests plastic waste should be controlled through laws that regulate waste sources and plastic additives in order to solve the problem of plastic accumulation in the oceans.
The paper strengthens the evidence that microplastics are present in the studied biota, suggesting that they are transferred between trophic levels through the interconnected food chain/web. The presence of micro plastics in fish guts highlights the need for further research on processing interventions for reducing microplastic contamination.
PPE (face masks and gloves) were surveyed at six Indian beaches. There were 496 PPE counted with an average density of 1.08 × 10−3 PPE m−2. Previous studies found similar PPE density. Face masks accounted for 98.39% of all PPE recorded, while gloves accounted for only 1.61%. As a result of the increase in vaccination[…]
The research seeks to depict and reduce marine plastic pollution in India. A GIS map has been created to show plastic input from different river basins. In order to address the challenges of marine litter in India, a guiding model has been developed. According to the predictive model, India produces 536 thousand tons of municipal[…]
Plastic research, policies, waste management, socioeconomics, challenges, and opportunities are discussed. Marine plastic studies have focused on a few locations, providing information on distribution and interactions with organisms. In addition to scientific investigation, enforcement, improvisation, and, if necessary, framing new policies, integrated technologies to manage plastic waste are essential.