In order to assess risks to the natural environment from microplastics, it is necessary to have reliable information on all potential inputs and discharges. This relies on stringent quality control measures to ensure accurate reporting. Here we focus on wastewater treatment works (WwTWs) and the complex sample matrices these provide. Composite samples of both influent and effluent were collected over a 24 h period on two separate occasions from eight different WwTWs across the UK. Sludge samples were taken on five occasions from five WwTWs. The WwTW treatments included activated sludge, trickling filter and biological aerated flooded filter with or without tertiary treatment. Using micro-FTIR analysis, microplastics ≥25 μm were identified and quantified. Procedural blanks were used to derive limits of detection (LOD) and limits of quantification (LOQ). Where values were above the LOQ, microplastics in the influent ranged from 955 to 17,214 microplastic particles/L and in the effluent from 2 to 54 microplastic particles/L, giving an average removal rate of 99.8%. Microplastics could be quantified in sludge at concentrations of 301–10,380 microplastics/g dry weight, this analytical method therefore revealing higher concentrations than reported in previous studies. The most common polymers present overall were polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET). We also report on critical considerations for blank corrections and quality control measures to ensure reliable microplastic analysis across different sample types.
This paper examines the exposure of river systems to MPW in order to better understand the sedimentary processes that control the legacy of plastic waste. According to the study, about 0.8 million tonnes of MPW entered rivers globally in 2015, affecting about 84 percent of rivers by surface area. According to the study, the amount[…]
The article summarizes the results of various scientific studies regarding the presence of microplastics in different drinking water sources. Further research is required to understand the effects of microplastic bioaccumulation on living organisms. There is a growing concern about microplastic pollution in the environment, which needs to be addressed and further research should be conducted[…]
Based on a custom framework for MPP policy that combines circular economy (CE) and life-cycle perspectives, the paper provides an overview of existing policies and identifies further policy options. Approximately 300 million tons of MPP are produced annually by land-based sources, which severely impacts marine ecosystems and harms livelihoods. Microplastic pollution is an issue that[…]
This review seeks to identify the complexity of impacts to marine organisms through the food web from plastic contamination. Contamination from plastic debris in marine environments pose a substantial risk to marine organisms, food webs and the ecosystem. The study investigates the intrusion of plastics into the marine food web and the subsequent consequences of[…]
The review highlights the extent and rate of the biodegradation of bioplastic in composting, soil, and aquatic environments. Bioplastic alternatives to petroleum-derived plastics are becoming more and more prevalent and have the potential to make a significant contribution to reducing plastic pollution in the environment. However, their biodegradation is highly dependent on various factors in[…]