Publications

Semi-automated analysis of microplastics in complex wastewater samples
||||

In order to assess risks to the natural environment from microplastics, it is necessary to have reliable information on all potential inputs and discharges. This relies on stringent quality control measures to ensure accurate reporting. Here we focus on wastewater treatment works (WwTWs) and the complex sample matrices these provide. Composite samples of both influent and effluent were collected over a 24 h period on two separate occasions from eight different WwTWs across the UK. Sludge samples were taken on five occasions from five WwTWs. The WwTW treatments included activated sludge, trickling filter and biological aerated flooded filter with or without tertiary treatment. Using micro-FTIR analysis, microplastics ≥25 μm were identified and quantified. Procedural blanks were used to derive limits of detection (LOD) and limits of quantification (LOQ). Where values were above the LOQ, microplastics in the influent ranged from 955 to 17,214 microplastic particles/L and in the effluent from 2 to 54 microplastic particles/L, giving an average removal rate of 99.8%. Microplastics could be quantified in sludge at concentrations of 301–10,380 microplastics/g dry weight, this analytical method therefore revealing higher concentrations than reported in previous studies. The most common polymers present overall were polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET). We also report on critical considerations for blank corrections and quality control measures to ensure reliable microplastic analysis across different sample types.

Latest Posts

1
Characteristics of microplastics in the beach sediments of Marina tourist beach, Chennai, India

The paper provides new insights into marine environments and human activities and suggests plastic waste should be controlled through laws that regulate waste sources and plastic additives in order to solve the problem of plastic accumulation in the oceans.

2
Microplastic pollution in coastal ecosystem off Mumbai coast, India

The paper strengthens the evidence that microplastics are present in the studied biota, suggesting that they are transferred between trophic levels through the interconnected food chain/web. The presence of micro plastics in fish guts highlights the need for further research on processing interventions for reducing microplastic contamination.

3
Personal protective equipment (PPE) pollution driven by the COVID-19 pandemic in coastal environment, Southeast Coast of India

PPE (face masks and gloves) were surveyed at six Indian beaches. There were 496 PPE counted with an average density of 1.08 × 10−3 PPE m−2. Previous studies found similar PPE density. Face masks accounted for 98.39% of all PPE recorded, while gloves accounted for only 1.61%. As a result of the increase in vaccination[…]

4
Effects of Marine Littering and Sustainable Measures to Reduce Marine Pollution in India

The research seeks to depict and reduce marine plastic pollution in India. A GIS map has been created to show plastic input from different river basins. In order to address the challenges of marine litter in India, a guiding model has been developed. According to the predictive model, India produces 536 thousand tons of municipal[…]

5
Litter and plastic monitoring in the Indian marine environment: A review of current research, policies, waste management, and a roadmap for multidisciplinary action

Plastic research, policies, waste management, socioeconomics, challenges, and opportunities are discussed. Marine plastic studies have focused on a few locations, providing information on distribution and interactions with organisms. In addition to scientific investigation, enforcement, improvisation, and, if necessary, framing new policies, integrated technologies to manage plastic waste are essential.