QSPR models for predicting the adsorption capacity for microplastics of polyethylene, polypropylene and polystyrene

In this study, five quantitative structure–property relationship (QSPR) models were developed for predicting the microplastic/water partition coefficients (log Kd) of organics between polyethylene/seawater, polyethylene/freshwater, polyethylene/pure water, polypropylene/seawater, and polystyrene/seawater. All the QSPR models show good fitting ability (R2 = 0.811–0.939), predictive ability (Q2ext = 0.835–0.910, RMSEext = 0.369–0.752), and robustness (Qcv2 = 0.882–0.957). They can be used to predict the Kd values of organic pollutants (such as polychlorinated biphenyls, chlorobenzene, polycyclic aromatic hydrocarbons, antibiotics perfluorinated compounds, etc.) under different pH conditions. The hydrophobic interaction has been indicated as an important mechanism for the adsorption of organic pollutants to microplastics. In sea waters, the role of hydrogen bond interaction in adsorption is considerable. For polystyrene, π–π interaction contributes to the partitioning. The developed models can be used to quickly estimate the adsorption capacity of organic pollutants on microplastics in different types of water, providing necessary information for ecological risk studies of microplastics.

Latest Posts

Leaving a plastic legacy: Current and future scenarios for mismanaged plastic waste in rivers

This paper examines the exposure of river systems to MPW in order to better understand the sedimentary processes that control the legacy of plastic waste. According to the study, about 0.8 million tonnes of MPW entered rivers globally in 2015, affecting about 84 percent of rivers by surface area. According to the study, the amount[…]

A critical review on recent research progress on microplastic pollutants in drinking water

The article summarizes the results of various scientific studies regarding the presence of microplastics in different drinking water sources. Further research is required to understand the effects of microplastic bioaccumulation on living organisms. There is a growing concern about microplastic pollution in the environment, which needs to be addressed and further research should be conducted[…]

‘Unlocking circular economy for prevention of marine plastic pollution: An exploration of G20 policy and initiatives’

Based on a custom framework for MPP policy that combines circular economy (CE) and life-cycle perspectives, the paper provides an overview of existing policies and identifies further policy options. Approximately 300 million tons of MPP are produced annually by land-based sources, which severely impacts marine ecosystems and harms livelihoods. Microplastic pollution is an issue that[…]

How plastic debris and associated chemicals impact the marine food web: A review

This review seeks to identify the complexity of impacts to marine organisms through the food web from plastic contamination. Contamination from plastic debris in marine environments pose a substantial risk to marine organisms, food webs and the ecosystem. The study investigates the intrusion of plastics into the marine food web and the subsequent consequences of[…]

Biodegradation of Different Types of Bioplastics through Composting—A Recent Trend in Green Recycling

The review highlights the extent and rate of the biodegradation of bioplastic in composting, soil, and aquatic environments. Bioplastic alternatives to petroleum-derived plastics are becoming more and more prevalent and have the potential to make a significant contribution to reducing plastic pollution in the environment. However, their biodegradation is highly dependent on various factors in[…]