Effects of nanoplastics at low level on the marine primary producer are largely unclear. To assess the potential risk of nanoplastic pollution, this study exposed marine green microalgae Platymonas helgolandica to 20, 200, and 2000 μg/L 70-nm polystyrene nanoplastics for 6 days. Nanoplastics significantly inhibited the growth of P. helgolandica during the first 4 days of exposure, and elevated heterocyst frequency was observed in 200 and 2000 μg/L exposure groups in the early exposure stage. Exposure to 200 and 2000 μg/L nanoplastics for 4 days increased the membrane permeability and mitochondrial membrane potential, and decreased light energy used in photochemical processes of microalgae. Moreover, clear morphological changes, including surface folds, fragmentation, aggregation cluster, and rupture, in the microalgae exposed to nanoplastics were observed under scanning electron microscope and transmission electron microscope. These results demonstrate that nanoplastics could reduce the microalgal vitality by the damage on cell morphology and organelle function.
This paper examines the exposure of river systems to MPW in order to better understand the sedimentary processes that control the legacy of plastic waste. According to the study, about 0.8 million tonnes of MPW entered rivers globally in 2015, affecting about 84 percent of rivers by surface area. According to the study, the amount[…]
The article summarizes the results of various scientific studies regarding the presence of microplastics in different drinking water sources. Further research is required to understand the effects of microplastic bioaccumulation on living organisms. There is a growing concern about microplastic pollution in the environment, which needs to be addressed and further research should be conducted[…]
Based on a custom framework for MPP policy that combines circular economy (CE) and life-cycle perspectives, the paper provides an overview of existing policies and identifies further policy options. Approximately 300 million tons of MPP are produced annually by land-based sources, which severely impacts marine ecosystems and harms livelihoods. Microplastic pollution is an issue that[…]
This review seeks to identify the complexity of impacts to marine organisms through the food web from plastic contamination. Contamination from plastic debris in marine environments pose a substantial risk to marine organisms, food webs and the ecosystem. The study investigates the intrusion of plastics into the marine food web and the subsequent consequences of[…]
The review highlights the extent and rate of the biodegradation of bioplastic in composting, soil, and aquatic environments. Bioplastic alternatives to petroleum-derived plastics are becoming more and more prevalent and have the potential to make a significant contribution to reducing plastic pollution in the environment. However, their biodegradation is highly dependent on various factors in[…]