Effects of nanoplastics at low level on the marine primary producer are largely unclear. To assess the potential risk of nanoplastic pollution, this study exposed marine green microalgae Platymonas helgolandica to 20, 200, and 2000 μg/L 70-nm polystyrene nanoplastics for 6 days. Nanoplastics significantly inhibited the growth of P. helgolandica during the first 4 days of exposure, and elevated heterocyst frequency was observed in 200 and 2000 μg/L exposure groups in the early exposure stage. Exposure to 200 and 2000 μg/L nanoplastics for 4 days increased the membrane permeability and mitochondrial membrane potential, and decreased light energy used in photochemical processes of microalgae. Moreover, clear morphological changes, including surface folds, fragmentation, aggregation cluster, and rupture, in the microalgae exposed to nanoplastics were observed under scanning electron microscope and transmission electron microscope. These results demonstrate that nanoplastics could reduce the microalgal vitality by the damage on cell morphology and organelle function.
The paper provides new insights into marine environments and human activities and suggests plastic waste should be controlled through laws that regulate waste sources and plastic additives in order to solve the problem of plastic accumulation in the oceans.
The paper strengthens the evidence that microplastics are present in the studied biota, suggesting that they are transferred between trophic levels through the interconnected food chain/web. The presence of micro plastics in fish guts highlights the need for further research on processing interventions for reducing microplastic contamination.
PPE (face masks and gloves) were surveyed at six Indian beaches. There were 496 PPE counted with an average density of 1.08 × 10−3 PPE m−2. Previous studies found similar PPE density. Face masks accounted for 98.39% of all PPE recorded, while gloves accounted for only 1.61%. As a result of the increase in vaccination[…]
The research seeks to depict and reduce marine plastic pollution in India. A GIS map has been created to show plastic input from different river basins. In order to address the challenges of marine litter in India, a guiding model has been developed. According to the predictive model, India produces 536 thousand tons of municipal[…]
Plastic research, policies, waste management, socioeconomics, challenges, and opportunities are discussed. Marine plastic studies have focused on a few locations, providing information on distribution and interactions with organisms. In addition to scientific investigation, enforcement, improvisation, and, if necessary, framing new policies, integrated technologies to manage plastic waste are essential.