Publications

Multiple impacts of microplastics can threaten marine habitat-forming species
||||

Microplastics are recognised as a potential global threat to marine ecosystems, but the biological mechanisms determining their impact on marine life are still largely unknown. Here, we investigated the effects of microplastics on the red coral, a long-lived habitat-forming organism belonging to the Corallium genus, which is present at almost all latitudes from shallow-water to deep-sea habitats. When exposed to microplastics, corals preferentially ingest polypropylene, with multiple biological effects, from feeding impairment to mucus production and altered gene expression. Microplastics can alter the coral microbiome directly and indirectly by causing tissue abrasions that allow the proliferation of opportunistic bacteria. These multiple effects suggest that microplastics at the concentrations present in some marine areas and predicted for most oceans in the coming decades, can ultimately cause coral death. Other habitat-forming suspension-feeding species are likely subjected to similar impacts, which may act synergistically with climate-driven events primarily responsible for mass mortalities.

Latest Posts

1
The effects of riverside cities on microplastics in river water: A case study on the Southern Jiangsu Canal, China

The paper studies the microplastic abundances and characteristics in the Southern Jiangsu Canal to reveal the effect of riverside cities on microplastics in river water. The results show that the microplastic abundance in the water body of the South Jiangsu Canal ranges from 3.41 to 19.07 particles L−1, with an average of 9.59 ± 3.95[…]

2
Distribution and weathering characteristics of microplastics in paddy soils following long-term mulching: A field study in Southwest China

This paper reveals the status of microplastic pollution in paddy soil with long-term mulching. The study investigates the distribution and weathering characteristics of filmy microplastics in a mulched paddy field (non-mulched, four years of mulched, and ten years of continuous mulched soil were investigated) in Southwest China. The filmy microplastics accumulated annually in the plough[…]

3
Review of polymer technologies for improving the recycling and upcycling efficiency of plastic waste

The paper reviews advancements in polymer technologies that aim to improve the efficiency of recycling and upcycling plastic waste. Increasing the rate of recycling and upcycling is critical for addressing the issues caused by plastic pollution, and, at the same time, overcoming the technical limitations on the same. The research emphasises the need to develop[…]

4
Nanoplastics are significantly different from microplastics in urban waters

The study analyses the current advancements in the behavioural differences between MPs and NPs in urban waters. Analytical challenges, fate, interactions with surrounding pollutants, and eco-impacts of MPs and NPs are similarly discussed in this paper. It has been highlighted in the study that the characterization and fate studies of NPs are more challenging as[…]

5
Unfolding the science behind policy initiatives targeting plastic pollution

The study investigates scientifically evidence-based policy initiatives for targeting plastic pollution. The issue of plastic pollution is complex and still related to several uncertainties, which implies that policy initiatives must allow for flexibility and ongoing evaluations to adjust to the evolving knowledge generation. It is also important that the scientific community provide the needed research[…]