Microplastic research in urban and industrial areas, including remote areas, have been conducted recently. However, there is still a lack of research about microplastic abundances in slum area. Ciwalengke River is located in Majalaya, Indonesia, which is dominated by slum and industrial areas that probably generate microplastics. This research was conducted to investigate the distribution of microplastic around the slum area for the first time. Surface water and sediment samples of the river were obtained at ten locations and grouped into six segments location based on different land use at the riverbank. Microplastic particles were identified using binocular microscope and categorized by shape and size. The average microplastic concentration were 5.85 ± 3.28 particles per liter of surface water and 3.03 ± 1.59 microplastic particles per 100 g of dry sediments. Microplastic concentration in the sediment samples were found to have significant differences in location segment (Kruskal Wallis test, p-value = 0.01165 < 0.05), but no significant differences were found in the water samples (Kruskal Wallis test; p-value = 0.654 > 0.05). In addition, microplastic distribution was dominated by fiber particle. More fiber shape might be derived from the direct clothing of residents in the river and fabric washing process in the textile industries. This was also revealed by Raman spectroscopy test of several microplastic particles indicating that the type of microplastic were polyester and nylon.
The paper provides new insights into marine environments and human activities and suggests plastic waste should be controlled through laws that regulate waste sources and plastic additives in order to solve the problem of plastic accumulation in the oceans.
The paper strengthens the evidence that microplastics are present in the studied biota, suggesting that they are transferred between trophic levels through the interconnected food chain/web. The presence of micro plastics in fish guts highlights the need for further research on processing interventions for reducing microplastic contamination.
PPE (face masks and gloves) were surveyed at six Indian beaches. There were 496 PPE counted with an average density of 1.08 × 10−3 PPE m−2. Previous studies found similar PPE density. Face masks accounted for 98.39% of all PPE recorded, while gloves accounted for only 1.61%. As a result of the increase in vaccination[…]
The research seeks to depict and reduce marine plastic pollution in India. A GIS map has been created to show plastic input from different river basins. In order to address the challenges of marine litter in India, a guiding model has been developed. According to the predictive model, India produces 536 thousand tons of municipal[…]
Plastic research, policies, waste management, socioeconomics, challenges, and opportunities are discussed. Marine plastic studies have focused on a few locations, providing information on distribution and interactions with organisms. In addition to scientific investigation, enforcement, improvisation, and, if necessary, framing new policies, integrated technologies to manage plastic waste are essential.