Holistic assessment of microplastics in various coastal environmental matrices, southwest coast of India

Plastics in the marine environment are introduced through multiple pathways, and pose serious threats to aquatic biota. Recently microplastic pollution and its possible consequences in India have been recognized by the scientific community, however the extent of the crisis has not yet been quantified. The present study attempted to ascertain the abundance, distribution and characteristics of microplastics in coastal waters (14 locations), beach sediments (22 locations) and marine fishes (11 locations) from the state of Kerala, southwest coast of India. The results showed that the mean microplastic abundance was 1.25 ± 0.88 particles/m3 in coastal waters and 40.7 ± 33.2 particles/m2 in beach sediments with higher concentrations in the southern coast of the state. The abundance of microplastics, mostly contributed by fragments, fibre/line and foam, in both coastal waters and beach sediments, were highly influenced by river runoff and proximity to urban agglomeration. Fourier Transform Infrared Spectroscopy-Attenuated Total Reflection (FTIR-ATR) revealed that polyethylene (PE) and polypropylene (PP) were the dominant polymers in the marine environment. The digestive tracts of 15 out of 70 commercially important fishes studied, contained 22 microplastic particles. Polyethylene (PE; 38.46%) followed by cellulose (CE; 23.08%), rayon (RY; 15.38%), polyester (PL; 15.38%) and polypropylene (PP; 7.69%) were the major contributors in the fish ingested microplastic composition. A broad range of heavy metals, metalloids and other elements that are potentially indicative of hazardous chemicals were present in microplastics collected from the beaches of Kerala. These results enhance our understanding on the sources, transport pathways and the associated environmental risks of microplastics to marine ecosystems.

Latest Posts

Leaving a plastic legacy: Current and future scenarios for mismanaged plastic waste in rivers

This paper examines the exposure of river systems to MPW in order to better understand the sedimentary processes that control the legacy of plastic waste. According to the study, about 0.8 million tonnes of MPW entered rivers globally in 2015, affecting about 84 percent of rivers by surface area. According to the study, the amount[…]

A critical review on recent research progress on microplastic pollutants in drinking water

The article summarizes the results of various scientific studies regarding the presence of microplastics in different drinking water sources. Further research is required to understand the effects of microplastic bioaccumulation on living organisms. There is a growing concern about microplastic pollution in the environment, which needs to be addressed and further research should be conducted[…]

‘Unlocking circular economy for prevention of marine plastic pollution: An exploration of G20 policy and initiatives’

Based on a custom framework for MPP policy that combines circular economy (CE) and life-cycle perspectives, the paper provides an overview of existing policies and identifies further policy options. Approximately 300 million tons of MPP are produced annually by land-based sources, which severely impacts marine ecosystems and harms livelihoods. Microplastic pollution is an issue that[…]

How plastic debris and associated chemicals impact the marine food web: A review

This review seeks to identify the complexity of impacts to marine organisms through the food web from plastic contamination. Contamination from plastic debris in marine environments pose a substantial risk to marine organisms, food webs and the ecosystem. The study investigates the intrusion of plastics into the marine food web and the subsequent consequences of[…]

Biodegradation of Different Types of Bioplastics through Composting—A Recent Trend in Green Recycling

The review highlights the extent and rate of the biodegradation of bioplastic in composting, soil, and aquatic environments. Bioplastic alternatives to petroleum-derived plastics are becoming more and more prevalent and have the potential to make a significant contribution to reducing plastic pollution in the environment. However, their biodegradation is highly dependent on various factors in[…]