This study aims to determine the degradation of plastic polypropylene (PP) and identify the presence of microplastic in sediments and seawater along the Tambak Lorok coastal area. The study was conducted by collecting samples from the sea surface area, at 50 cm and 170 cm depths, while seawater and sediments were collected from six stations. The results showed an early stage of degradation because of abiotic factors. The surface morphology of plastic changed, indicating the disorientation of the plastic. Furthermore, the results demonstrated that organic carbon decreased by 3.15%, 6.67%, and 16.76% for the PP applied on surface water, at 50 cm depth and at 170 cm depth, respectively. From six stations, PP microplastic was the dominant type, where microplastic in sediment was bio-fouled fiber ranging in size from 255.23 to 1245.71 μm; however, in seawater, it was 7–111 particles/10 mL and ranged from 270.27 to 1279.12 μm in size.
This paper examines the exposure of river systems to MPW in order to better understand the sedimentary processes that control the legacy of plastic waste. According to the study, about 0.8 million tonnes of MPW entered rivers globally in 2015, affecting about 84 percent of rivers by surface area. According to the study, the amount[…]
The article summarizes the results of various scientific studies regarding the presence of microplastics in different drinking water sources. Further research is required to understand the effects of microplastic bioaccumulation on living organisms. There is a growing concern about microplastic pollution in the environment, which needs to be addressed and further research should be conducted[…]
Based on a custom framework for MPP policy that combines circular economy (CE) and life-cycle perspectives, the paper provides an overview of existing policies and identifies further policy options. Approximately 300 million tons of MPP are produced annually by land-based sources, which severely impacts marine ecosystems and harms livelihoods. Microplastic pollution is an issue that[…]
This review seeks to identify the complexity of impacts to marine organisms through the food web from plastic contamination. Contamination from plastic debris in marine environments pose a substantial risk to marine organisms, food webs and the ecosystem. The study investigates the intrusion of plastics into the marine food web and the subsequent consequences of[…]
The review highlights the extent and rate of the biodegradation of bioplastic in composting, soil, and aquatic environments. Bioplastic alternatives to petroleum-derived plastics are becoming more and more prevalent and have the potential to make a significant contribution to reducing plastic pollution in the environment. However, their biodegradation is highly dependent on various factors in[…]