Distribution of microplastics in soil and freshwater environments: Global analysis and framework for transport modeling

Microplastics are continuously released into the terrestrial environment from sources where they are used and produced. These microplastics accumulate in soils, sediments, and freshwater bodies, and some are conveyed via wind and water to the oceans. The concentration gradient between terrestrial inland and coastal regions, the factors that influence the concentration, and the fundamental transport processes that could dynamically affect the distribution of microplastics are unclear. We analyzed microplastic concentration reported in 196 studies from 49 countries or territories from all continents and found that microplastic concentrations in soils or sediments and surface water could vary by up to eight orders of magnitude. Mean microplastic concentrations in inland locations such as glacier (191 n L−1) and urban stormwater (55 n L−1) were up to two orders of magnitude greater than the concentrations in rivers (0.63 n L−1) that convey microplastics from inland locations to water bodies in terrestrial boundary such as estuaries (0.15 n L−1). However, only 20% of studies reported microplastics below 20 μm, indicating the concentration in these systems can change with the improvement of microplastic detection technology. Analysis of data from laboratory studies reveals that biodegradation can also reduce the concentration and size of deposited microplastics in the terrestrial environment. Fiber percentage was higher in the sediments in the coastal areas than the sediments in inland water bodies, indicating fibers are preferentially transported to the terrestrial boundary. Finally, we provide theoretical frameworks to predict microplastics transport and identify potential hotspots where microplastics may accumulate.

Latest Posts

The effects of riverside cities on microplastics in river water: A case study on the Southern Jiangsu Canal, China

The paper studies the microplastic abundances and characteristics in the Southern Jiangsu Canal to reveal the effect of riverside cities on microplastics in river water. The results show that the microplastic abundance in the water body of the South Jiangsu Canal ranges from 3.41 to 19.07 particles L−1, with an average of 9.59 ± 3.95[…]

Distribution and weathering characteristics of microplastics in paddy soils following long-term mulching: A field study in Southwest China

This paper reveals the status of microplastic pollution in paddy soil with long-term mulching. The study investigates the distribution and weathering characteristics of filmy microplastics in a mulched paddy field (non-mulched, four years of mulched, and ten years of continuous mulched soil were investigated) in Southwest China. The filmy microplastics accumulated annually in the plough[…]

Review of polymer technologies for improving the recycling and upcycling efficiency of plastic waste

The paper reviews advancements in polymer technologies that aim to improve the efficiency of recycling and upcycling plastic waste. Increasing the rate of recycling and upcycling is critical for addressing the issues caused by plastic pollution, and, at the same time, overcoming the technical limitations on the same. The research emphasises the need to develop[…]

Nanoplastics are significantly different from microplastics in urban waters

The study analyses the current advancements in the behavioural differences between MPs and NPs in urban waters. Analytical challenges, fate, interactions with surrounding pollutants, and eco-impacts of MPs and NPs are similarly discussed in this paper. It has been highlighted in the study that the characterization and fate studies of NPs are more challenging as[…]

Unfolding the science behind policy initiatives targeting plastic pollution

The study investigates scientifically evidence-based policy initiatives for targeting plastic pollution. The issue of plastic pollution is complex and still related to several uncertainties, which implies that policy initiatives must allow for flexibility and ongoing evaluations to adjust to the evolving knowledge generation. It is also important that the scientific community provide the needed research[…]