This chapter discusses different approaches to studying ocean plastic pollution. It focuses on the scientific background of three general methods of plastic pollution research. The first method identifies plastic pollution directly from the source, the second identifies plastic pollution behavior and pathways of transport, and the third method identifies pollution. Synergies between the three methodologies are stimulated by three strategies. Three methods exist for analyzing plastic pollution: Ferry method, bridge method, and polder method.
The paper provides new insights into marine environments and human activities and suggests plastic waste should be controlled through laws that regulate waste sources and plastic additives in order to solve the problem of plastic accumulation in the oceans.
The paper strengthens the evidence that microplastics are present in the studied biota, suggesting that they are transferred between trophic levels through the interconnected food chain/web. The presence of micro plastics in fish guts highlights the need for further research on processing interventions for reducing microplastic contamination.
PPE (face masks and gloves) were surveyed at six Indian beaches. There were 496 PPE counted with an average density of 1.08 × 10−3 PPE m−2. Previous studies found similar PPE density. Face masks accounted for 98.39% of all PPE recorded, while gloves accounted for only 1.61%. As a result of the increase in vaccination[…]
The research seeks to depict and reduce marine plastic pollution in India. A GIS map has been created to show plastic input from different river basins. In order to address the challenges of marine litter in India, a guiding model has been developed. According to the predictive model, India produces 536 thousand tons of municipal[…]
Plastic research, policies, waste management, socioeconomics, challenges, and opportunities are discussed. Marine plastic studies have focused on a few locations, providing information on distribution and interactions with organisms. In addition to scientific investigation, enforcement, improvisation, and, if necessary, framing new policies, integrated technologies to manage plastic waste are essential.