Analysis of small microplastics in coastal surface water samples of the subtropical island of Okinawa, Japan

Marine plastic debris is widely recognized as a global environmental issue. Small microplastic particles, with an upper size limit of 20 μm, have been identified as having the highest potential for causing damage to marine ecosystems. Having accurate methods for quantifying the abundance of such particles in a natural environment is essential for defining the extent of the problem they pose. Using an optical micro-Raman tweezers setup, we have identified the composition of particles trapped in marine aggregates collected from the coastal surface waters around the subtropical island of Okinawa. Chemical composition analysis at the single-particle level indicates dominance by low-density polyethylene, which accounted for 75% of the small microplastics analysed. The smallest microplastics identified were (2.53 ± 0.85) μm polystyrene. Our results show the occurrence of plastics at all test sites, with the highest concentration in areas with high human activities. We also observed additional Raman peaks on the plastics spectrum with decreasing debris size which could be related to structural modification due to weathering or embedding in organic matter. By identifying small microplastics at the single-particle level, we obtain some indication on their dispersion in the ocean which could be useful for future studies on their potential impact on marine biodiversity.

Latest Posts

Extreme weather events as an important factor for the evolution of plastisphere but not for the degradation process

This paper characterizes the fungal and bacterial colonizers of 5 types of plastic films (High-Density Polyethylene, Low-Density Polyethylene, Polypropylene, Polystyrene, and Polyethylene Terephthalate) throughout a 242-day incubation in the south-eastern Mediterranean and relates them to the chemical changes observed on the surface of the samples via ATR-FTIR. Neither bacterial nor fungal community structures were related[…]

Performance and Degradation of Nonwoven Mulches Made of Natural Fibres and PLA Polymer—Open Field Study

This paper provides insights into the sustainable alternatives that can replace conventional plastic mulches, such as biodegradable mulches made from natural fibers and biopolymers. The microscopic and FTIR analyses conducted during the study showed the degradation of the fibers from the mulches during the exposure time to a certain extent. The nonwoven mulches provide higher[…]

Characterization of the degradation products of biodegradable and traditional plastics on UV irradiation and mechanical abrasion

This paper investigates the degradation of biodegradable polybutylene adipate terephthalate/polylactic acid (PBAT/PLA) and traditional polyethylene (PE) plastic under two typical abiotic conditions: ultraviolet (UV) irradiation and mechanical abrasion (MA) for up to nine months. The quantitative analysis of the degradation products was carried out using membrane filtration and total organic carbon determination (MF-TOCD). The results[…]

Mitigating the Negative Effects of Plastic Pollution for Sustainable Economic Growth in Nigeria

This paper identifies technological innovation, policy formulation, advocacy and sensitization, and bioremediation as some of the approaches that are currently used for the mitigation of plastic pollution in Nigeria. This chapter also highlights the need to encourage, enhance, and disseminate scientific research on mitigating the harmful effects of plastic pollution in Nigeria. It concluded with[…]

Microplastics in the environment: A critical overview on its fate, toxicity, implications, management, and bioremediation strategies

This review provides insights into the sources of microplastics, the ecotoxicity of microplastics, and the impact microplastics have on aquatic and marine life, management, and bioremediation of microplastics. Policies and strategies adopted by the government to combat microplastic pollution are also discussed in this review. Microplastics tend to accumulate in many aquatic systems, contaminate them,[…]