Publications

A probabilistic risk assessment of microplastics in soil ecosystems
||||

Plastics have a variety of applications due to their versatility, relative cost, and strength-to-weight ratio, and resistance to degradation. As a result, plastic waste can be found in all corners of the Earth. A class of plastic contaminants that have received increasing attention in terms of their potential impact on ecosystems is microplastics (≤5 mm). The greatest attention to date has been on their potential effect in marine ecosystems. However, a growing number of studies are examining their potential impact on soil ecosystems. The data reported in the literature on the environmentally-relevant concentrations of microplastics in soils and the concentration of microplastics that causes an adverse effect in soil biota were used to perform a probabilistic risk assessment of microplastics to soil biota. An environmental exposure distribution was constructed from the concentrations of microplastics reported in soil in the literature. Species sensitivity distributions were constructed using concentration of microplastics in soil that had no adverse effect on soil species (NOEC) or the lowest concentrations that had an adverse effect on soil species (LOEC) reported in the literature. The 95th centile of the environmental exposure distribution (8147 microplastic particles per gram of soil) was greater than 22 and 28% of the species sensitivity distribution constructed using NOECs and LOECs, respectively. The assessment concluded that environmentally relevant concentrations of microplastics reported in the literature could pose a considerable risk to soil biota. It is also important to note that due to the continued production of large quantities of plastic and the persistence of microplastics in the environment, environmentally-relevant concentrations of microplastics in soil are likely to only rise.

Latest Posts

1
The effects of riverside cities on microplastics in river water: A case study on the Southern Jiangsu Canal, China

The paper studies the microplastic abundances and characteristics in the Southern Jiangsu Canal to reveal the effect of riverside cities on microplastics in river water. The results show that the microplastic abundance in the water body of the South Jiangsu Canal ranges from 3.41 to 19.07 particles L−1, with an average of 9.59 ± 3.95[…]

2
Distribution and weathering characteristics of microplastics in paddy soils following long-term mulching: A field study in Southwest China

This paper reveals the status of microplastic pollution in paddy soil with long-term mulching. The study investigates the distribution and weathering characteristics of filmy microplastics in a mulched paddy field (non-mulched, four years of mulched, and ten years of continuous mulched soil were investigated) in Southwest China. The filmy microplastics accumulated annually in the plough[…]

3
Review of polymer technologies for improving the recycling and upcycling efficiency of plastic waste

The paper reviews advancements in polymer technologies that aim to improve the efficiency of recycling and upcycling plastic waste. Increasing the rate of recycling and upcycling is critical for addressing the issues caused by plastic pollution, and, at the same time, overcoming the technical limitations on the same. The research emphasises the need to develop[…]

4
Nanoplastics are significantly different from microplastics in urban waters

The study analyses the current advancements in the behavioural differences between MPs and NPs in urban waters. Analytical challenges, fate, interactions with surrounding pollutants, and eco-impacts of MPs and NPs are similarly discussed in this paper. It has been highlighted in the study that the characterization and fate studies of NPs are more challenging as[…]

5
Unfolding the science behind policy initiatives targeting plastic pollution

The study investigates scientifically evidence-based policy initiatives for targeting plastic pollution. The issue of plastic pollution is complex and still related to several uncertainties, which implies that policy initiatives must allow for flexibility and ongoing evaluations to adjust to the evolving knowledge generation. It is also important that the scientific community provide the needed research[…]