Microplastics are emerging contaminants and widespread in the ocean, but their impacts on coral reef ecosystems are poorly understood, and in situ study is still lacking. In the present study, the distribution patterns of microplastics in the environment and inhabiting organisms were investigated along the east coast of Hainan Island, South China Sea, and the physiological impacts of the microplastics on scleractinian corals were analyzed. We documented average microplastic concentrations of 14.90 particles L−1 in seawater, 343.04 particles kg−1 in sediment, 4.97 particles cm−2 in corals, and 0.67–3.12 particles cm−1 in Tridacnidae, Trochidae and fish intestines. Further analysis revealed that the characteristics of microplastics in the organisms were different from those in the environment, indicating preferential enrichment in the organisms. Furthermore, there was an obvious correlation between microplastic concentration and symbiotic density in corals. Furthermore, caspase3 activity was significantly positively correlated with the microplastic content in the small-polyp coral Pocillopora damicornis, but the large-polyp coral Galaxea fascicularis showed higher tolerance to microplastics. Taken together, our results suggest that microplastics are selectively enriched in corals and other reef-dwellers, in which they exact differential stress (apoptotic) effects, with the potential to impact the coral-Symbiodiniaceae symbiosis and alter the coral community structure.
This paper characterizes the fungal and bacterial colonizers of 5 types of plastic films (High-Density Polyethylene, Low-Density Polyethylene, Polypropylene, Polystyrene, and Polyethylene Terephthalate) throughout a 242-day incubation in the south-eastern Mediterranean and relates them to the chemical changes observed on the surface of the samples via ATR-FTIR. Neither bacterial nor fungal community structures were related[…]
This paper provides insights into the sustainable alternatives that can replace conventional plastic mulches, such as biodegradable mulches made from natural fibers and biopolymers. The microscopic and FTIR analyses conducted during the study showed the degradation of the fibers from the mulches during the exposure time to a certain extent. The nonwoven mulches provide higher[…]
This paper investigates the degradation of biodegradable polybutylene adipate terephthalate/polylactic acid (PBAT/PLA) and traditional polyethylene (PE) plastic under two typical abiotic conditions: ultraviolet (UV) irradiation and mechanical abrasion (MA) for up to nine months. The quantitative analysis of the degradation products was carried out using membrane filtration and total organic carbon determination (MF-TOCD). The results[…]
This paper identifies technological innovation, policy formulation, advocacy and sensitization, and bioremediation as some of the approaches that are currently used for the mitigation of plastic pollution in Nigeria. This chapter also highlights the need to encourage, enhance, and disseminate scientific research on mitigating the harmful effects of plastic pollution in Nigeria. It concluded with[…]
This review provides insights into the sources of microplastics, the ecotoxicity of microplastics, and the impact microplastics have on aquatic and marine life, management, and bioremediation of microplastics. Policies and strategies adopted by the government to combat microplastic pollution are also discussed in this review. Microplastics tend to accumulate in many aquatic systems, contaminate them,[…]